TY II-86
TPAH3UCTOPH KT50I

ТЕХНИЧЕСКИЕ УСЛОВИЯ аAO.336.064 ТУ

(Взамен ТУ II-74)

Срок действия с<u>01.08.86</u>

HO OH. 08.91 01.08.96

выписка

Настоящие технические условия (ТУ) распространяются на кремниевие эпитаксиально-планарные р-п-р транзисторы типов КТ50ІА, КТ50ІБ, КТ50ІВ, КТ50ІГ, КТ50ІД, КТ50ІЕ, КТ50ІЖ,КТ50ІИ, КТ50ІК, КТ50ІЛ, КТ50ІМ в металлостеклянном корпусе, предназначенные для работы в линейных и импульсных схемах, узлах и блоках аппаратуры, изготавливаемые для народного хозяйства и для поставки на экспорт.

Транзисторы, выпускаемые по настоящим ТУ, должны удовлетворять всем требованиям ГОСТ II630-84 и требованиям, установленным в соответствующих разделах настоящих ТУ.

В новых разработках не применять. Транзисторы преднавначены - для дооснащения ранее выпущенных изделий и изготакливаемых длитель-

Транзисторы изготавливают в климатическом исполнении УХЛ категория размещения 2 по ГОСТ 15150-69.

Транзисторы предназначены для автоматизированной сборки (монтажа) аппаратуры и соответствуют ГОСТ 20.39.405-84, конструктивно-технологическая группа УП, а также для ручной сборки (монтажа), что указывают в договоре на поставку.

I. ОБЩИЕ ПОЛОЖЕНИЯ

- І.І. Термины и определения по ГОСТ II630-84 и ГОСТ 20003-74.
 Перечень обозначений документов, на которые даны ссылки в
 ТУ, приведен в разделе IO.
 - 1.2. Классификация. Условные обозначения.
- I.2.I. Классификация и система условных обозначений транзисторов по ОСТ II 336.919-81.

1.2.2. Типи поставляемых транзисторов указаны в табл. 1.

1.2.3. Пример обозначения транзисторов при заказе и в

конструкторской документации другой продукции:

Транзистор КТ50ІА аАО.336.064 ТУ.

					Taó	Taómna I
Условное обозначе-	Классиўик климатиче	Классиўмкационные параметры климатических условиях	тры в нормальных	Kom OKII	Обозначение комплекта '	Условное обозначениє корпуса и обозна-
ние тран- зистора	Статический ко передачи тока, Цез =-1В. Д	Статический коэўўміциент передачи тока, $h_{2/3}$, $U_{K3} = -1B$, $J_{K} = 30$ мА	Пробивное напряжение коллектор— эмиттер		конструк- торской документации	чение стандарта
	не менее	не более	$egin{aligned} U_{K3}R_{npo}\delta \cdot & \mathrm{B} \ J_{K} = \mathrm{I-I0^{-3}_{MA}} \end{aligned}$			
KT50IA	20	09	I.5	6341131831	3.365.035	XT-1 TOCT 18472-82
KT50IB	40	120	15	6341131841	3.365.035	KT-I FOCT 18472-82
KT50IB	80	240	15	6341131851	3,365,035	KT-I FOCT I8472-82
KT50IF	20	09	30	6341131861	3.365.035	KT-I TOCT 18472-82
KTSOII	40	120	30	6341131871	3.365.035	KT-I FOCT 18472-82
KTSOIE	80	240	30	6341131881	3.365.035	KT-I FOCT I8472-82
KTSOLM	20	09	45	634II3I89I	3,365,035	KT-I FOCT 18472-82
KT50IM	40	120	45	634II3I90I	3,365,035	KT-I IOCT I8472-82
KTSOIK	80	240	45	634II3I9II	3,365,035	KT-I 10CT 18472-82
KTSOLI	20	09	09	634II3I92I	3,365,035	KT-I TOCT 18472-82
KIOSIN,	40	120	60	6341131931	3,365,035	KT-I TOCT 18472-82

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- 2.1. Требования к конструкции
- 2.І.І. Транзисторы изготавливают по комплекту конструкторской документации, обозначение которого приведено в табл.І.

Общий вид, габаритные, установочные и присоединительные размеры транзисторов приведены на чертеже 3.365.035 ГЧ.

- 2.1.2. Описание образцов внешнего вида 3.365.035 ДЗ.
- 2.І.З. Масса транзистора не должна быть более 0,6 г.
- 2.І.4. Показатель герметичности транзисторов по скорости утечки воздуха не должен быть более $5 \cdot 10^{-3}$ Па \cdot см/с $(5 \cdot 10^{-5}$ л.мкм.рт.ст.с⁻¹).
 - 2.1.5. Величина растягивающей силы 5Н (0,5 кгс).

Минимальное расстояние места изгиба вывода от корпуса 3 мм.

Величина силы, направленной перпендикулярно к оси вывода, 2,5 H (0,25 кгс).

2.І.6. Температура пайки (235 \pm 5) ^ОС, расстояние от корпуса до места пайки не менее 5 мм, продолжительность пайки (2 \pm 0,5) с.

Транзисторы должны выдерживать воздействие тепла, возникающего при температуре пайки (260 \pm 5) $^{\rm O}$ C.

Выводы должны сохранять паяемость в течение двенадцати месяцев с даты изготовления при соблюдении режимов и правил выполнения пайки, указанных в разделе "Указания по применению и эксплуатации".

Покрытия выводов, предназначенных для пайки, не должны иметь просветов основного металла, коррозионных поражений, отслаивания и шелушения.

- 2.1.7. Транзисторы должны быть светонепроницаемыми.
- 2.1.8. Транзисторы должны быть пожаробезопасными.

Транзисторы не должны самовоспламеняться и воспламенять окружающие их элементы и материалы аппаратуры в пожароопасном аварийном режиме в диапазоне от I,I $\rho_{\kappa,max}$ до 10 $\rho_{\kappa,max}$ Транзисторы должны быть негорючими.

- 2.1.9. Удельная материалоемкость транзисторов не более $\frac{3-10^{-5}}{2}$ г/ч. $\frac{2.4\cdot 10^{-5}}{2.4\cdot 10^{-5}}$ г/ч.
 - 2.2. Требования к электрическим параметрам и режимам
 - 2.2.1. Электрические параметры транзисторов при приемке и поставке должны соответстовать нормам, приведенным в табл.2.
 - 2.2.2. Электрические параметры транзисторов, изменяющиеся в течение наработки, приведены в табл.3. Остальные параметры соответствуют нормам, указанным в табл.2.
 - 2.2.3. Электрические параметры транзисторов в течение срока сохраняемости приведены в табл.2.
 - 2.2.4. Предельно допустимые значения электрических режимов эксплуатации в диапазоне температур среды приведены в табл.4.
- 2.2.5. Удельная энергоемкость транзисторов не более $\bigcirc \frac{1.75 \cdot 10^{-5}}{1.75 \cdot 10^{-5}}$ Вт/ч. 1,4 ·10 -5 Вт/ч
 - 2.3. Требования к устойчивости при механических воздействиях Механические воздействия по первой группе табл. I гост 11630-84. в том числе:

синусоидальная вибрация

диапазон частот от І до 500 Гц; амплитуда ускорения $100 \text{ м/c}^2 (10 \text{ g});$ линейное ускорение 500 м/с 2 (50 \dot{q}).

2.4. Требования к устойчивости при климатических воздействиях Климатические воздействия по ГОСТ 11630-84, в том числе :

повышенная рабочая температура среды + I25°C ; пониженная рабочая температура среды минус 60 °С ; изменение температуры среды от минус 60 °C до + 125 °C.

2.5. Требования к надежности

2.5.1. Интенсивность отказов транзисторов в течение наработки tн не более 3·10⁻⁷ 1/ч.

Наработка транзисторов $t_{H} = \frac{25000}{20000}$

2.5.2. 98-процентный срок сохраняемости транзисторов

10 лет.

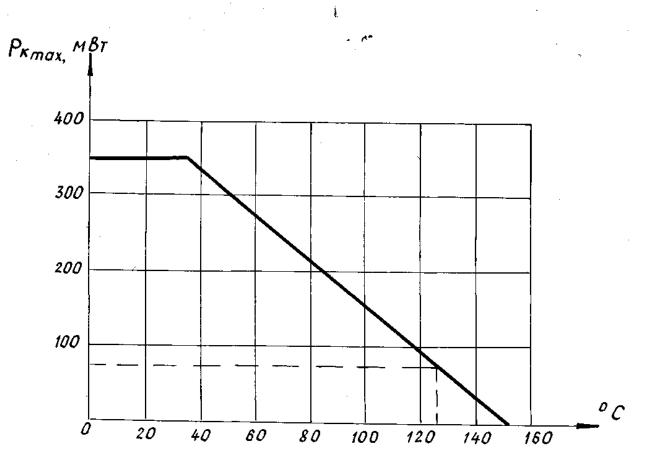
		·		
Наименование параметра (режим	Вуквен-	Но	рма	Темпе-
измерения), единица измерения,	ное	нө	не	ратура,
тип транзистора	чение	менее	более	°C
Статический коэффициент				
передачи тока				
$(U_{\kappa 3} = -IB, J_{\kappa} = 30 \text{ mA})$	h ₂₁₃	!		
KT501A, KT501F, KT501M, KT501J		20	60	25 <u>+</u> I0
КТ501Б, КТ501Д, КТ501И, КТ50IM		40	130	25 <u>±</u> I0
KT501B, KT501E, KT501K		80	240	25 <u>+</u> I0
Пробивное напряжение				
коллектор-эмиттер	·			
(J_{κ} = 1 mkA, $R_{59} \leq$ 10 kOm),B	U _{κэR} ηροδ			
KT50IA, KT50IB, KT50IB		I 5		25 <u>+</u> I0
К Т5 01 Г ,КТ501Д,К Т 501Е		30		25 <u>+</u> I0
KT50IM, KT50IM, KT50IK		45		25 <u>+</u> I0
KT50IЛ, KT50IM		60		25 <u>+</u> 10
Пробивное напряжение				
эмиттер-база	,,			
$($ J_{5} = I MRA), B	U _{3δ0 προδ}		·	
KT501A,KT501B,KT501B,KT501F				
KT501H,KT501E		IO		25 <u>+</u> 10
KT501K,KT501H,KT501K				
КТ501Л, КТ501М		20		25 <u>+</u> I0
·			٠	
		· •	_	

Наименование параметра (режим измерения), единица измерения, тип транзистора	Буквен- ное обозна- чение	<u>Но</u> не менее	рма не более	Темпе- ратура, ^О С
Напряжение насыщения коллектор-эмиттер ($J_{\kappa} = 300 \text{ мA}$, $J_{6} = 60 \text{ мA}$), В КТ501A, КТ501E, КТ501E, КТ501K, КТ501M, КТ501K, КТ501M, КТ501M	U _{кэнас}		0,4	25 <u>+</u> 10
Напряжение насыщения база-эмиттер (J_{K} = 300 мA, J_{5} = 60 мA), В КТ50IA, КТ50IB, КТ50IB, КТ50II КТ50IД, КТ50IE, КТ50IX, КТ50IИ КТ50IK, КТ50IЛ, КТ50IM	U _{БЭнас}		I , 5	25 <u>±</u> I0

Примечание. В отдельных технически и экономически обоснованных случаях по соглашению потребителя и поставщика и с разрешения организации, утвердившей технические условия, допускается поставка транзисторов в режимах и по нормам на электрические параметры (учитывающим специфику их применения в аппаратуре потребителя), отличным от приведенных в ТУ, при условии полного соответствия транзисторов всем требованиям ТУ по конструкции, надежности и сохраняемости, устойчивости к воздействию механических и климатических факторов, правилам приемки и контролю качества.

	таолица з				
Наименование параметра (режим измерения), единица измерения, тип транзистора	Буквен- ное обозна- чение	не	рма не более	Темпе- ратура, ос	
Пробивное напряжение коллектор-эмиттер ($J_{K} = 100 \text{ MRA}, R_{53} \leq 10 \text{ ROM})$, В КТ501А, КТ501Е, КТ501В, КТ501Е, КТ501Д, КТ501Е КТ501Е, КТ501И, КТ501И, КТ501И, КТ501И, КТ501И, КТ501И СТатический коэффициент передачи тока ($U_{K3} = -1\text{B}, J_{K} = 30 \text{ MA})$ КТ501А, КТ501Д, КТ501И, КТ501И, КТ501В, КТ501Д, КТ501И, КТ501И, КТ501В, КТ501Е, КТ501И, КТ501И	U _{K3R προδ} .	15 30 45 60 15 30 60	90 ⊤80 360	25 25 25 25 25 25	

Наименование параметра (условия) единица измерения, тип транзистора	Буквен- ное обозна- чение	Норма	Приме- чание
Максимально допустимое постоянное напряжение коллектор-эмиттер ($R_{53} \le 10$ кОм), В КТ501А, КТ501В, КТ501В КТ501Г, КТ501Д, КТ501В КТ501Л, КТ501И, КТ501К КТ501Л, КТ501М Максимально допустимое постоянное напряжение эмиттер-база, В КТ501А, КТ501Е, КТ501В, КТ501Г, КТ501Д, КТ501Е КТ501В, КТ501Л, КТ501М	Ц _{кэтах}	15 30 45 60 10	I I I
Максимально допустимое постоянное напряжение коллектор-база, В KT50IA, KT50IE, KT50IB KT50IF, KT50IE, KT50IE, KT50IE, KT50IE, KT50IE, KT50II, KT50II	U _{KSmax}	15 30 45 60	I I I


		<u> </u>	
Наименование параметра (условия) единица измерения, тип транзистора	Буквен- ное обозна- чение	Норма	Приме- чание
	<u> </u>		
Максимально допустимый постоянный]
ток коллектора, мА	J _{K max}		
KT50IA, KT50IB, KT50IB, KT50IF,			
KT501A, KT501E, KT501X, KT501A,		}	ĺ
КТ501К,КТ501Л,КТ501Й		300	2,3
Максимально допустимый импульсный			·
ток коллектора, мА	$J_{\kappa,u_{max}}$		
KT50IA, KT50IB, KT50IB, KT50IT,	N, M max		·
KT501H, KT501E, KT501M, KT501M,			
KT50IK, KT50IA, KT50IM		500	3,4
Максимально допустимый постоянный			· !
ток базн, мА	$J_{\delta max}$		
KT50IA, KT50IB, KT50IB, KT50IF,	-o max		
KT50IA, KT50IE, KT50IM, KT50IM,			
KT50IK, KT50IJ, KT50IM		100	2
Максимально допустимая постоянная		:	
рассеиваемая мощность коллек-			
ropa, MBT	P _{K max}		
KT50IA, KT50IB, KT50IB, KT50IF,	'n max		
KT501A, KT501E, KT501M, KT501M,			
KT50IK,KT50IN,KT50IM		350	5
		-	
		ļ	

Наименование параметра (условия) единица измерения, тип транзистора	Буквен- ное обозна- чение	Норма	Приме- чание
Максимально допустимая темпера- тура перехода, ^O C КТ501А, КТ501Б, КТ501В, КТ501Г, КТ501Д, КТ501Е, КТ501Ж, КТ501И,	t _{nmax}	+150	

Примечания: І. В диапазоне температур от +25 °C до +125 °C.

При понижении температури от +25 °C до минус 60 °C. U_{K2mqx} и U_{K5mqx} снижаются по линейному закону до 10 В для КТ50ІА ... КТ50ІВ, до 25В для КТ50ІГ ... КТ50ІЕ, до 40В для КТ50ІЖ ... КТ50ІК до 55В для КТ50ІЛ, КТ50ІМ. U_{62mqx} снижаєтся до 15В для КТ50ІЖ ... КТ50ІМ

- 2. Для всего дианазона рабочих температур.
- 3. При условии непревышения $P_{K,D,G,X}$
- 4. Гарантируются значения $h_{213} > 6$, $U_{K3_{HGC}} \le 0.7$ В при $J_6 \ge 100$ мА.
- 5. В диапазоне температур от минус 60 °C до + 35 °C. При повышении температуры от + 35 °C до + 125 °C мощность снижается линейно согласно графику.

5. УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

- 5. I. Указания по применению и эксплуатации транзисторов по ГОСТ II630-84 и ОСТ II 336.907.0-79 с дополнениями и уточнениями, изложенными в настоящем разделе.
- 5.2. Основное назначение транзистора работа в импульсных и линейных схемах.
- 5.3. Допускается применение транзисторов, изготовленных в обычном климатическом исполнении, в аппаратуре, предназначенной для эксплуатации во всех климатических условиях, при покрытии транзисторов непосредственно в аппаратуре лаками (в 3-4 слоя) типа УР-23I по ТУ 6-I0-863-84, ЭП-730 по ГОСТ 20824-8I с последующей сущкой в соответствии с РМ II 070.046-82.
- 5.4. Допустимое значение статического потенциала не более 500 B.
- 5.5. Входной контроль паяемости проводят методами, указанными в подразделе 3.3, по планам контроля, установленным для периодических испытаний.
- 5.6. Приборы пригодны для монтажа в аппаратуре методом групповой пайки и паяльником.

Режим и условия монтажа транзисторов в аппаратуре - по ОСТ II 336.907.0-79.

Расстояние от корпуса до места лужения и пайки (по длине вывода) не менее 5 мм.

При пайке с теплоотводом:

температура припол (270 \pm 10) $^{
m O}$ С ;

время пайки не более 3 с;

время лужения не более 2 с.

При пайке бөз теплоотвода

температура припоя (250 \pm 10) $^{\rm O}$ C.

Допускается пайка волной припоя при температуре (235 + 5) °C.

Число допустимых перепаек выводов транзисторов при проведении монтажных (сборочных) операций равно трем.

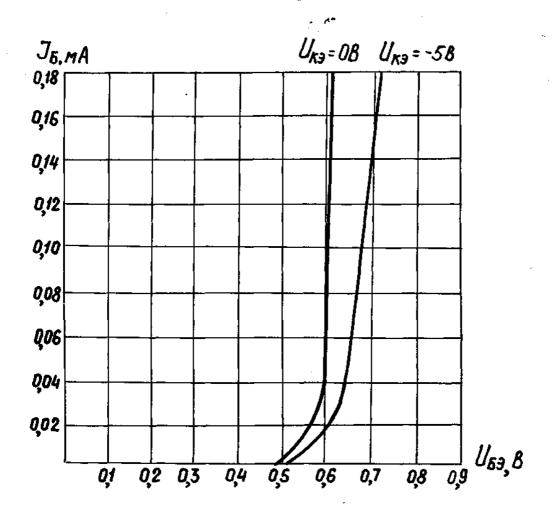
5.7. Расстояние от корпуса до начала изгиба вывода не менее 3,0 мм.

Радиус изгиба 1,5 мм.

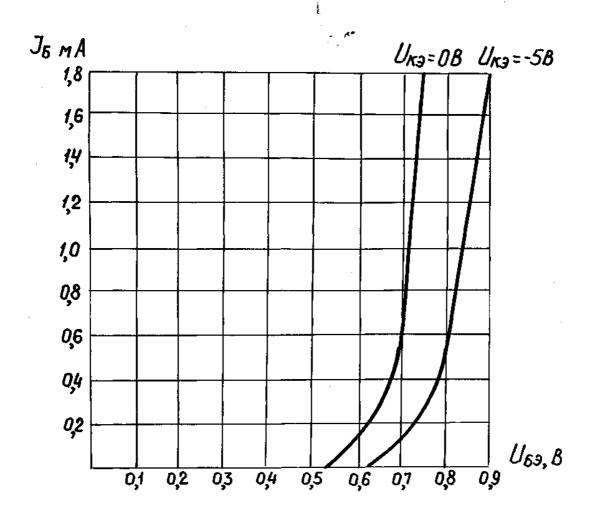
- 5.8. При включении транзисторов в электрическую цепь, находящуюся под напряжением, базовый вывод должен присоединяться первым и отключаться последним.
- 5.9. В процессе измерения параметров транзисторов и их эксплуатации необходимо принимать меры, направленные на снижение механических нагрузок на стеклоизоляторы (шайбы-спутники, заливка стеклоизоляторов специальными компаундами и т.п.)

6. СПРАВОЧНЫЕ ДАННЫЕ

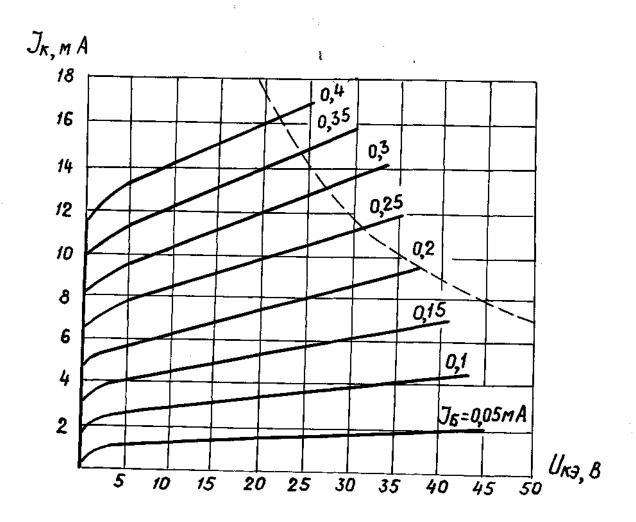
- 6.1. Типовые значения и разброс основных параметров транзисторов приведены в приложении 2.
- 6.2. Вольт-амперные характеристики транзисторов приведены на рис. I . . . 2 приложения 2.
- 6.3. Зависимости электрических параметров транзисторов от режимов и условий их эксплуатации приведени на рис.3 ... 7 приложения 2.


СПРАВОЧНЫЕ ДАННЫЕ ТРАНЗИСТОРОВ КТ501А, КТ501В, КТ501В, KT501F, KT501H, KT501H, KT501H, KT501H, KT501H, KT501H ЗНАЧЕНИЯ ОСНОВНЫХ ПАРАМЕТРОВ

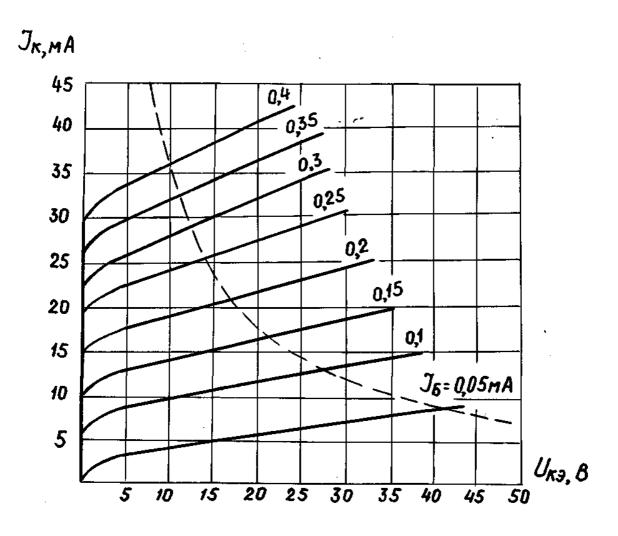
Буквен-	Значе	ние па	раметра	HIGH
ное обозна- чение	мини- маль- ное	типо- вое	макси- маль- ное	Примечание
h ₂₁₃	20		60 120	
	80		240	
Ц _{кЭЯ проб.}	15 30 45 60			
Ц _{э60 проб.}	IO 20			
	ное обозна- чение /1 ₂₁₃	ное обозна- чение маль- ное маль- н	Ное обозна- мини- каль- вое ное ное ное ное ное ное ное ное ное н	ное обозна- чение маль- ное маль- н


Наименование параметра (режим	Буквен-	Значе	ние пар	аметра	0
измерения), единица измерения, тип транзистора	обозна- обозна-	мини- маль- ное	ТИПО- ВОС	макси- маль- ное	Примечание
Напряжение насыщения коллектор-эмиттер (J_{K} = 300 мA, J_{5} = 60 мA), В КТ501A, КТ501B, КТ501B, КТ501T, КТ501Д, КТ501E, КТ501M, КТ501M, КТ501M, КТ501M,	<i>Ц_{кэнас}</i>			0,4	
Напряжение насыщения база-эмиттер ($J_{K} = 300 \text{ мA}$, $J_{5} = 60 \text{ мA}$), В КТ501A, КТ501B, КТ501B, КТ501Г, КТ501Д, КТ501Е, КТ501М, КТ501М, КТ501М, КТ501М, КТ501М, КТ501М, КТ501М Входное сопротивление в режиме малого сигнала ($U_{K5} = -5B$, $J_{3} = 5 \text{ мA}$,	U _{бЭ нас}		-	T,5	anders anders anders anders and the state of
	h ₁₁₃	130	800	2500	

Наименование параметра (режим измерения), единица измерения, тип транзистора	Буквен- ное обозна- чение	Значе: мини- маль- ное	ние пар типо- вое	1	Примечание
Выходная полная проводимость в режиме малого сигнала ($U_{K6} = -5$ В, $J_3 = 1$ мА, $f = 270$ Гц), ом $^{-1}$ КТ50ІА, КТ50ІБ, КТ50ІВ, КТ50ІГ, КТ50ІД, КТ50І	h ₂₂₃ h ₂₁₃ i	0,15·10	0,3·10 ⁻⁴	0,55:10	

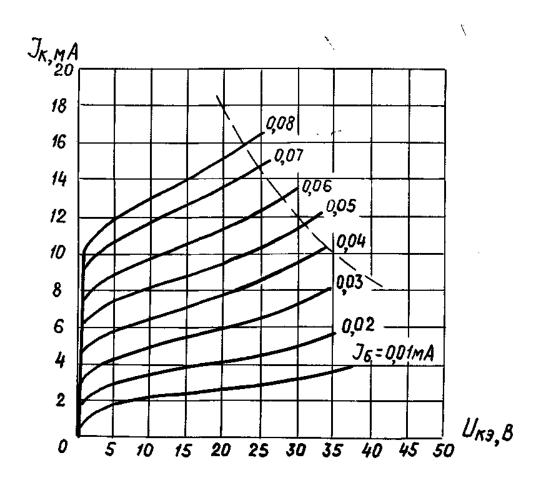

Типовые входные характеристики транзисторов КТ50IA ... КТ50IM в схеме с общим эмиттером при $t_{o\kappa\rho}$ = (25 ± IO) o C

Типовые входные характеристики транзисторов КТ50IA ... КТ50IM в схеме с общим эмиттером при $t_{o\kappa\rho}$ = (25 ± 10) °C

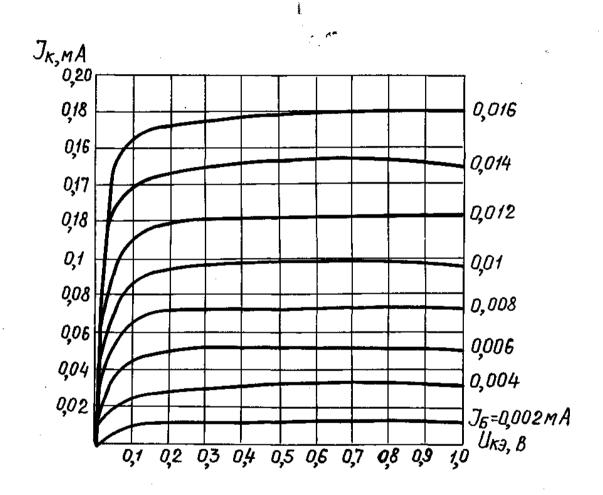

Типовне выходные характеристики транзисторов КТ50ІА, КТ50ІГ, КТ50ІК, КТ50ІИ в схеме с общим эмиттером при t_{OKO} = (25 ± 10) °C

___ _ _ граница допустимой мощности

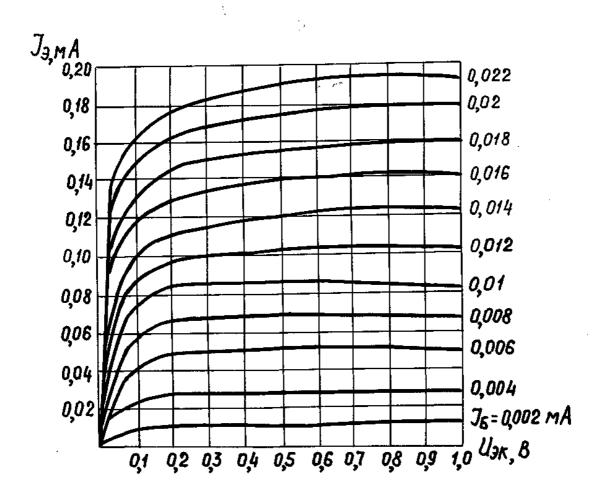
Рис.3


Типовне виходные характеристики транзисторов КТ501Б,КТ501Д,КТ501И,КТ501М в схеме с общим эмиттером при $t_{o\kappa\rho}$ = (25 \pm 10) o C

_ _ _ _ граница допустимой мощности

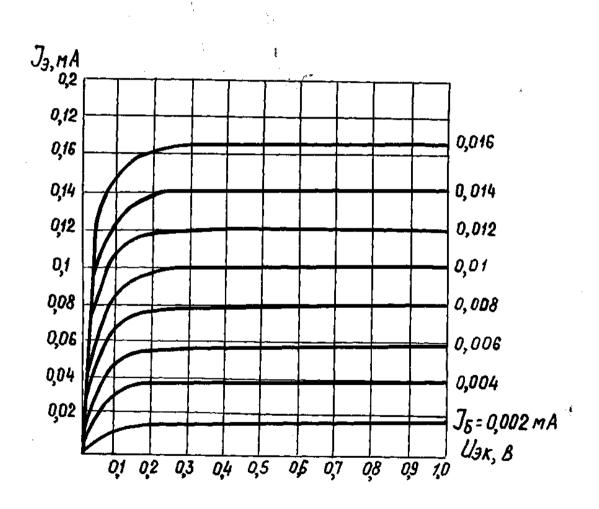

Рис. 4

Типовне выходные характеристики транзисторов КТ50ІВ,КТ50ІЕ,КТ50ІК в схеме с общим эмиттером при $t_{o\kappa\rho}$. = (25 ± 10) o C

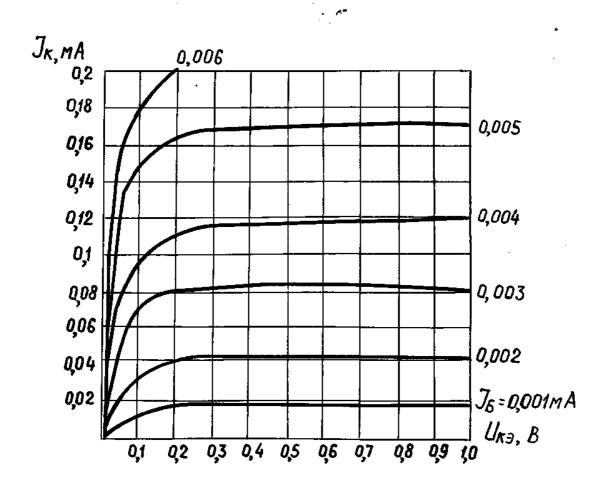


____ граница допустимой мощности

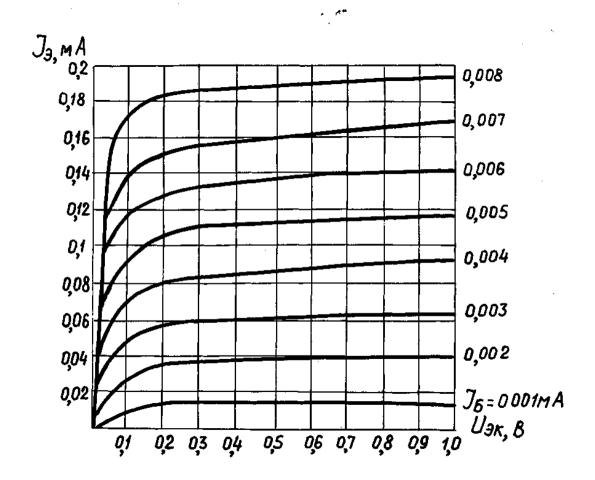
Типовне выходные характеристики транзисторов КТ50ІА,КТ50ІГ,КТ50ІЖ,КТ50ІЛ в схеме с общим эмиттером в микрорежимах при $t_{OKP} = (25 \pm 10)^{O}$ С (прямое включение)



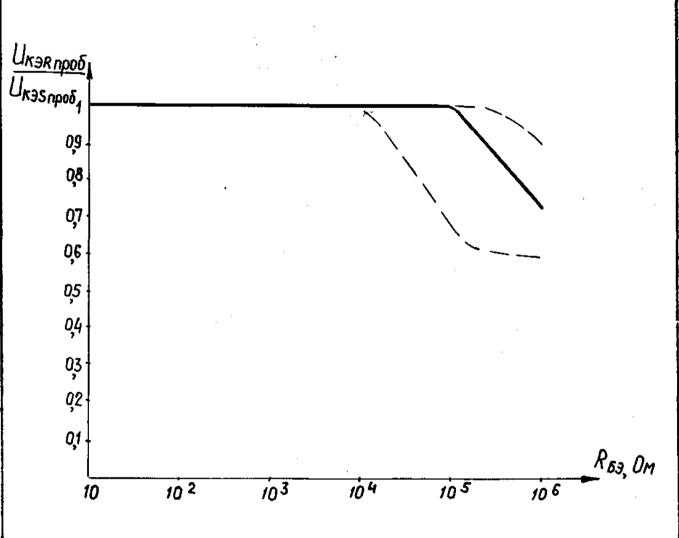
Типовые выходные характеристики транзисторов КТ50ІА,КТ50ІГ,КТ50ІЖ,КТ50ІЛ в схеме с общим эмиттером в микрорежимах при $t_{o\kappa\rho}$ = (25 ± 10) °C (инверсное включение)


PMc.7

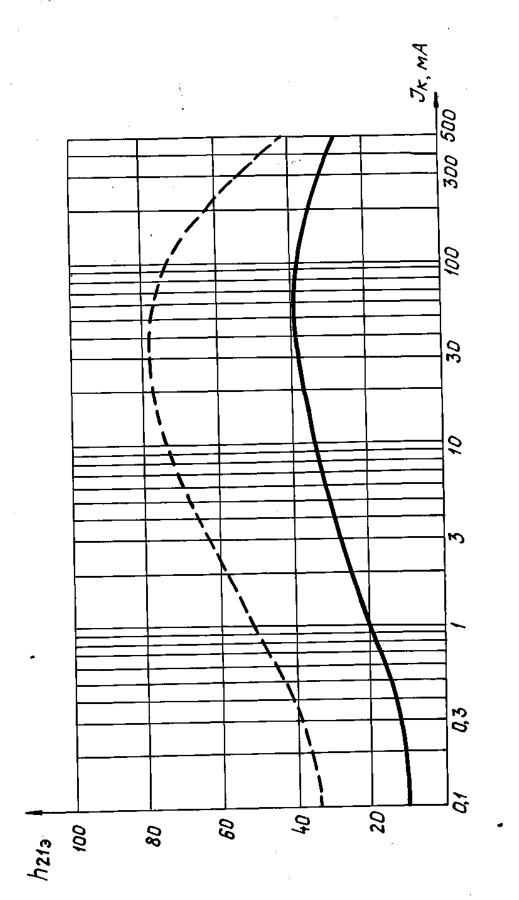
Типовне выходные характеристики транзисторов КТ50ІБ,КТ50ІД,КТ50ІИ,КТ50ІМ в схеме с общим эмиттером в микрорежимах при $t_{o\kappa\rho}$ = (25 ± 10) °C (инверсное включение)



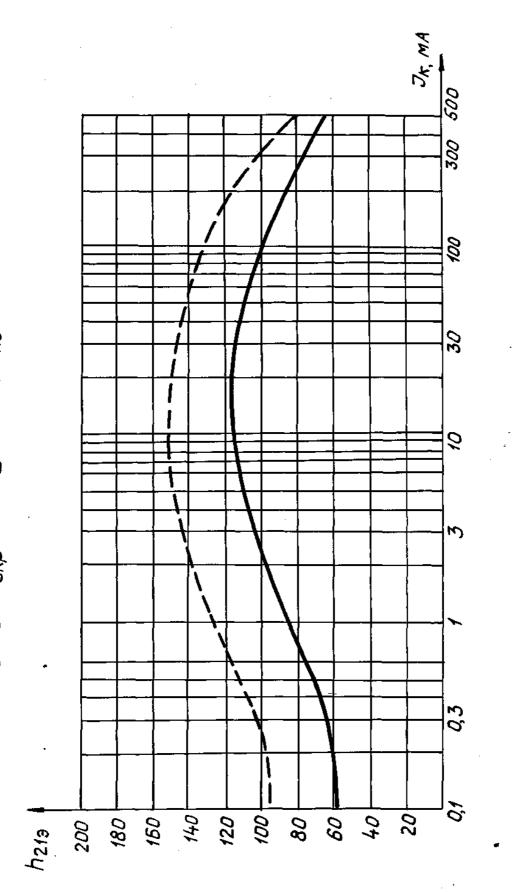
Puc.9


Типовые выходные характеристики транзисторов KT50IB, KT50IE, KT50IK в схеме с общим эмиттером в микрорежимах при $t_{o\kappa\rho}=(25\pm 10)^{\circ}$ С (прямое включение)

Типовые выходные характеристики транзисторов КТ50ІВ,КТ50ІЕ,КТ50ІК в схеме с общим эмиттером в микрорежимах при $t_{o\kappa\rho}$ = (25 ± 10) °C (инверсное включение)



Зависимость пробивного напряжения коллектор-эмиттер от сопротивления в цепи база-эмиттер транзисторов КТ50IA ... КТ50IM при $t_{o\kappa\rho}$. = (25 \pm 10) o C


____ типовая
___ 95% разброс электрических параметров

Гиповая зависимость статического коэффициента передачи тока от тока коллектора при $t_{okp}=(25\pm10)^{-0}$ С, Uкэ = - IB

для транзисторов КТ501Б, КТ501Д, КТ501И, КТ501М MAR TPAHSMCTOPOB KT50IA, KT50IT, KT50IM, KT50IM

PEC. I3

для транзисторов KT50IK для транзисторов KT50IB, KT50IE

PEC. I4

Типовые зависимости напряжения насыцения коллектор-эмиттер и напряжения насыщения база-эмиттер от тока базы транзисторов КТ50IA ... КТ50IM при

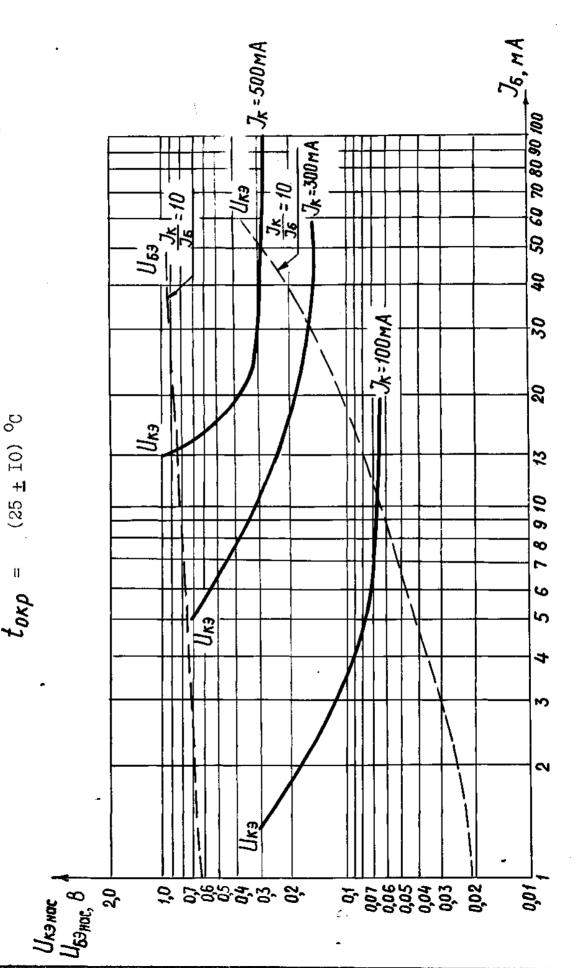
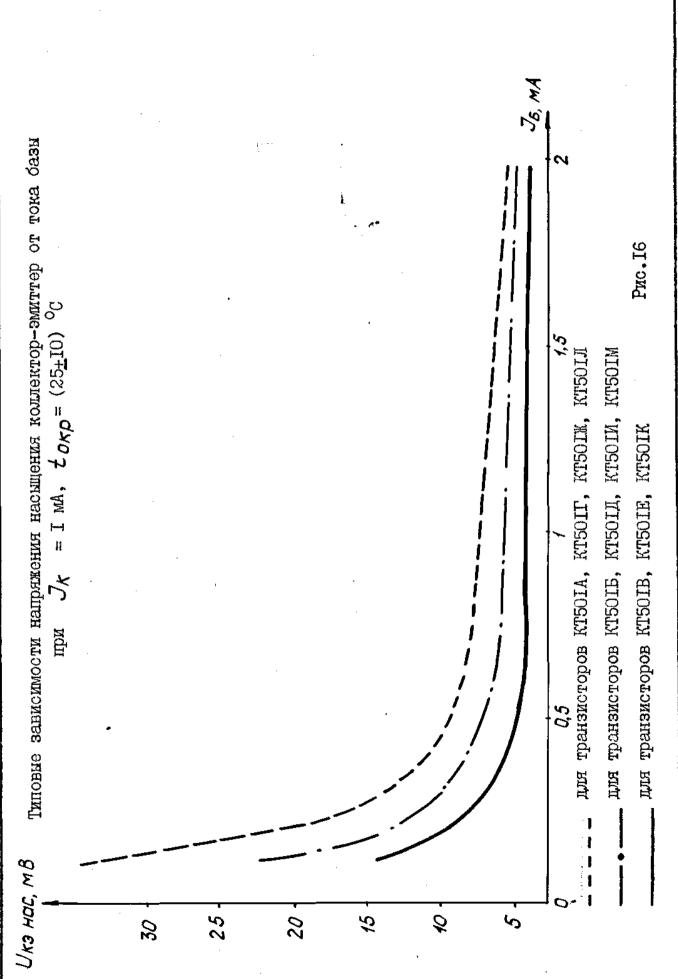
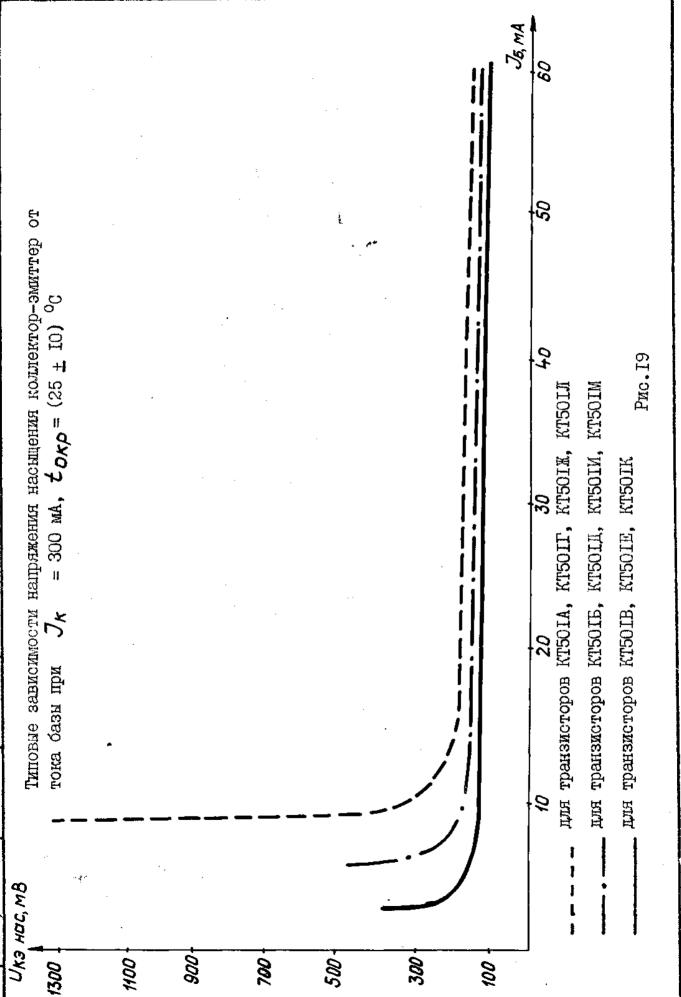



Рис. 15



.041

120

9

8

